BOUNDARY-LAYER DEVELOPMENT IN THE INITIAL
SECTION OF A TUBE WITH INJECTION
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and A. V. Fafurin

Results are presented of a theoretical and experimental investigation of turbulent boundary-
layer development in the initial section of a tube in the presence of injection. It is hence
considered that there is no main flow. Formulas are derived to compute the friction co-
efficient and the dynamic characteristics of the flow in the hydrodynamic stabilization sec-
tion for subsonic gas-motion velocities. The proposed method of computation is compared
with the results of an experimental iﬁvestigation.

The influence of injection on the characteristics of the main flow is studied in [1]. However, cases
are encountered in practical applications when there is no main flow and the flow is limited either because
of entrance of gas into the channel through its penetrable walls or because of evaporation or pitting of the
walls themselves.

NOTATION

B — constant t —time
b — permeability parameter p — density
cf — local friction coefficient v — density of the wall material
D - diameter %, [ —length
H — shape parameter T — tangential stress
(pwW)w — stream density ¥ — relative friction coefficient
R — Reynolds number w— relative velocity
Ry — penetrability factor & — relative coordinate
w — velocity m, n — exponents
0* — displacement thickness U — rate of change of the aggre-
O0** — momentum-~loss thick~ gate state

ness
M — dynamic~viscosity co-

efficient

SUBSCRIPTS

0 — parameters on the outer boundary of the boundary layer
w — parameters at the wall

In the case under consideration it is convenient to write the system of initial equations in the form 12]:

momentum equation

dR** R**
2z T+ H) 5

dRy

= Ro (¥ 4 1) (1)
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continuity equation
X

4HR* = R, — 4\ R,ax @)
3
relative friction coefficient
e Rt e ®

The system (1)~(4) can be solved for a kmown dependence of the shape factor H on the penetrability
parameter b,

This dependence can be determined if relations obtained earlier in [2] are utilized:
1

_de —1 = 5
ivm—_z, z=1-Q, © = (5)

Here ©=£" is the velocity profile in the turbulent nucleus of the boundary layer for isothermal gra-
dient gas flow. Solving the results of integrating (5) with respect to «, we obtain

o=1—{1—)VVV¥ 4o+ (1 —E)b/4 (6)

The integral turbulent boundary-layer characteristics & *, 6 **, H are computed by means of the known
velocity profile:

a*=§(1-_m) (1_.;';«)@, 6**=§m(1—-m)(1—'7";-)dy (7)

As has been shown in [1], the results of a computation performed by means of (6) and (7) are satis-
factorily approximated by the dependence

H=H,(1 + kb) (8)
Here H is the value of the shape parameter under standard conditions,
It is convenient to write the friction law in the domain of subsonic gas-flow velocities as
¢, = BR"-m 9)

From (1)-(9) we then obtain a system of dynamic boundary~layer equations in the initial section of a
tube in the presence of just a transverse flow of substance:

dR*¥ R¥* dR B ¥ 18
ax + 0+ H) B = Rop g a0
X
R
AHR** = Ry — 4§Rwdx, b= %E“—’R**m, H = Ho(1 + kb) 1y
8

Let us examine some particular cases of solving the system (10), (11). Let us put b=const, In this
case the system (10)-(11) reduces to a linear first-order differential equation:

¥ 1-b) dB** R** ¥-b
R L @

whose solution it is convenient to write as

_ 13
R** — ¢R,, R ¥ T YT IRY -y T Y "

Substituting (13} into (10) and (11), we obtain the Reynolds number dependence:

| - _ B m AL I+ HY R 14
B =dX, d= 5317 F Lo (14)

and the penetrability factor as a function of the longitudinal coordinate:

B R
Ry =5 b g (15)
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Let us put (ow)y =const. In this case the system reduces to
a nonlinear differential equation of the form

i pr

) 5
i - */Yj R** dR, ¥-b (dR, d(4HR*)

/;/gjiny’a 1 + (1 + H)—E)—d_l—i‘ﬁ— b {dR** T T 4R } =0 (16)

T T | .
> = i which solved with respect to the derivative yields an equation con~

2 = G 1 venient for integration by a numerical method:
= | o] X
0 Z U § 3 [ dRy 4 (H +- Hokmb - b/(¥ - b) (17
dR** T {4 4&Hkb (R**Ro) — (1 -~ HY &R** [ (¥ 1 b)Ro
Fig. 3 Ro— 4HR®
) —

X= ~—, (18)

Figures 1 and 2 present the results of computing the Reynolds number constructed along the diameter
and the thickness of the momentum loss as a function of the longitudinal eoordinate for different values of
the penetrability factor: Ry,= 1-10%, 2-2.5-10%, 3-5-10% In this case (17) was solved numerically on the
M-20 computer by the Runge-Kutta method for B=0.0256, k=0.05, m=90.25. The computation was checked
by dividing the integration spacing in half,

In practical applications it is often necessary to deal with the problems elucidated above, but the outer
boundary of the channel hence changes in time by the mass of the channel wall going over into the gaseous
state. In this case, we can write on the basis of the law of mass conservation

2nlr (pw),dt = pp2mirdr (19)

From (19) follows

d
(oWl = T ‘d—: (20)
Remarking that dr/dt=U is the rate of change of the aggregate state, we have
(p0)y = y,U (21)
Integrating (20) with (21) taken into account, we obtain the law of the time change in the radius:

r=ry + Ut (22)
and the connection between the flux density and the geometric channel characteristics:

T (r2 — 11)
t+

(ow)y = (23)

Here r; and ry are the final and initial radii of the channel, respectively; t, is the total time of the

process. Solving (22), (23) jointly, we obtain the connection between the penetrability factor and the ex-
ternal parameters of the process:
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21,0
U (24)

R, =
Therefore, the system (9)-(11), (24) permits computation of all the necessary dynamical time char-
acteristics of the flow,

An experimental investigation of the formulated problem was carried out on an apparatus whose dia-
gram and description are presented in [1]. The forward endface of the porous tube was hence plugged up.

The total and static pressures along the tube axis as well as the flow temperature were measured
during the test. The velocity and Reynolds number were computed by means of the measured parameters.

The range of variation of the flux density (ow)y in the experiments was 554-3600 kg/m?-h. The re-
sults of tests 1-5, presented in Fig. 3 for values of Ry =300, 788, 1290, 1533, 1945, are compared with the
data of a numerical computation by means of (17) and (18). As is seen, satisfactory agreement between
the method proposed and the experiment holds.

Therefore, the following sequence of a dynamic boundary~layer computation in the initial portion of
the tube in the presence of injection can be proposed.

In the case b=const,

1) the parameters ¥ and H are determined for a given penetrability parameter from (3) and (11);

2) the Reynolds-number distribution is determined by (13} and (14) when the longitudinal coordinate
X is given;

3) the distribution of the penetrability factor is computed by means of (15), and the change in the fric-
tion coefficient along the tube length by means of (3) and (8).

In the case (pw)y =const,
1} the value of the penetrability factor Ry is determined by means of (4) and known D and y;

2) having been given the number Ry or R**, the R** or R, for given Ry, is then determined numer-
ically by means of (17);

3) Longitudinal coordinate X is computed by means of (18), and the penetrability parameter b by
means of (11);

4) the distribution of the friction coefficient is found from (3) and (8). In the case of computing a
variable-radius channel, the penetrability factor Ry is determined from (24) for a specific time, and the
computation at (pw)y =const is performed for this value of Ry.
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